After this lecture, you can...

... discuss speed-sensitivity trade-off in terms of RAM-CPU
... explain the full BLAST algorithm
... list the factors including heuristics that make BLAST fast
... interpret BLAST output/results
... decide which BLAST flavor to use for your similarity search
... explain PSI-BLAST profile searches and their sensitivity
... work with P-values obtained using permutation statistics
... list the factors influencing the E-value (# random hits)
... convert between P-value (probability) and E-value (expected frequency)
Searching a database

- We want to find a query sequence in the database: TGCTGCAGGACAACAGTT
- Could we make sequence alignments between the query and every database sequence?

– Making alignment matrices with all sequences in the database would require a lot of computer operations (CPU time)

An old slide

Random-access memory (RAM)

- A computer program can quickly find elements in the RAM
 - Accessing the contents of a variable
 - Finding a specific sub-sequence (k-mer) in a database, for example all GGAC instances in the sequence below
 - For longer k, you need more RAM to store all possible k-mers
k-mer searches

- Sequences can be divided into shorter subsequences or k-mers
 - k-mers consist of k nucleotides or amino acids

- We can store an index of all k-mers that occur in the database sequences in the RAM
 - All k-mers can be stored up to $k \approx 20$ for nucleotides and $k \approx 9$ for amino acids (but probably more since it is unlikely that all k-mers exist in the database sequences)

- If we split a query sequence into k-mers of the same length, we can rapidly identify all the database sequences containing them

Searching a database

- We want to find a query sequence in the database: $\textit{TGCTGCAGGACAACAGTT}$
- Could we make sequence alignments between the query and every database sequence?
 - Making alignment matrices with all sequences in the database would require a lot of computer operations (CPU time)

- Could we store all possible k-mers in the database sequences in the RAM and find the query by using indexing?
 - Depending on the length of k this would require a lot of RAM
 - This would limit the search to exact matches
Transcriptomics

- We want to discover what genes are expressed in a human tumor
- The human genome (3 Gb) can easily be stored in RAM
- Would this allow us to identify all expressed genes in the transcriptome?

Metagenomics

- We want to discover what microbes are living in the environment
- We might just be able to store all known microbes (>75 Gb) in the RAM
- Would this allow us to identify all microbes in the metagenome?
Index search is limited to exact matches

- Exact matches are fast, but may limit your results
- Human transcriptome:
 ...how about genetic variation between individuals?
 ...how about discovering novel mutations that may have caused the cancer?
 ...and sequencing errors?
- Metagenome:
 ...how diverse are microbes that live in nature?
 ...how about viruses, fungi, protists, etc.?
 ...how about discovering completely new species that have never been seen before?

Natural sequence divergence

- If we align metagenomic sequencing reads to a reference genome, we can distinguish multiple distinct SAR86 strains

 ![Sequence divergence graph]

 - The sequences at the top (~97% identity) belong to a strain that is closely related to the reference genome
 - The sequences below (~60-80% identity) are more distantly related strains
Best of both worlds

• If you allow more differences in your hit, ...
 ...your search will be more sensitive (can detect distant homology)
 ...but you can never store all possible sequences (=too much RAM)
 ...so it is necessary to use sequence alignment (=CPU operations)

• The solution is to combine the best of both worlds:
 – Quickly find potential hits using exact k-mers stored in an index (high RAM)
 – Extend only potential hits using sequence alignment (high CPU)

Basic Local Alignment Search Tool (BLAST)

• BLAST finds good potential homologs at reasonable speed
 – 10-50x faster than Smith-Waterman

• Terminology:
 – Query: sequence we search the database with
 – Hit or Subject: similar sequence found in the database

• BLAST is the most used bioinformatics program
 – More than 100,000 queries per day on the NCBI BLAST server
 – The BLAST article has been cited >58,000 times
The BLAST search algorithm

1. Identifies all words (length W) in the query
 - Default lengths: $W = 3$ for protein, $W = 11$ for DNA
 - Based on substitution scores

2. Quickly finds similar words in the database
 - “Similar” words are defined by using the substitution matrix (e.g. BLOSUM62)
 - All words in database sequences are stored in RAM
 - The index quickly locates all potential hit seqs

3. Extends seeds in both directions to find HSPs between query and hit
 - HSP: region that can be aligned with a score above a certain threshold

Example

Neighborhood words stored in the RAM allow potential hits to be rapidly retrieved

```
SLAALLFACKTPQGQRQLVNQWIKQPLMDKNRIERLNLVEA
FA +TP G R++ +W+
LGFSKYFATRTPGSRMLKRWLHDFSQSWCCAEFHHKWCVI
```

High-scoring Segment Pair (HSP)
BLAST input and output

BLAST input (query sequences)

MTQSSHAVAA FDLGAALRQE GLTETDYSEI QRDPNRAELG TFGV

protein_sequence_A

MLTETDYSEI QRRLGRDPNR AELGMFGVMN RAELGMFGY

protein_sequence_B

MHAVAAFQG LQSKQLTE TDYEQRL GRMFVMSH ECQYNRDA

protein_sequence_C

RPLLRPKPE FGAVVIV

BLAST output (hits)
What does a BLAST hit look like?

<table>
<thead>
<tr>
<th>Query and subject (hit) identifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query: P91002</td>
</tr>
</tbody>
</table>

Output:
- **Identifiers**: 8
 - Query and subject identifiers
- **Database**: RefSeq
- **Query length**: 163
- **Subject length**: 228

Alignment:
- **Score**: 339 (0.1%)
- **Expect**: 0.000001
- **Identity**: 45%
- **Positives**: 37 (9)
- **Negatives**: 131
- **Gaps**: 2 (0.1%)
Percent identities and positives

Note: positives are not reported for a DNA search

Alignment length, mismatches, gaps
Location of the HSP on the query and hit

E-value and bitscore

...more about E-values later
BLAST flavors: direct searches

- **Nucleotide-nucleotide searches**
 - Nucleotide database & nucleotide query
 - blastn (default: W = 11 nucleotides)
 - Find homologous genes in different species
 - Megablast (default: W = 28 nucleotides)
 - Designed to efficiently find longer alignments between very similar nucleotide sequences
 - Best tool to find highly identical hits for a query sequence
 - For example: find sequences from the same species
 - Discontiguous Megablast
 - Uses discontiguous words (e.g. W = 11 nucleotides: AT - GT - AC - CG - CG - T)
 - For example, this can focus the search on codons (the third nucleotide of codons is less conserved due to the degeneracy of the genetic code → next slide)
 - Best tool to find nucleotide-nucleotide hits at larger evolutionary distances for protein-coding query sequences

- **Protein-protein searches**
 - Protein database & protein query sequences
 - blastp (default: W = 3 amino acids)
 - Find homologous proteins in different species

BLAST flavors: translated searches

- We can exploit the conservation of protein sequences when aligning DNA sequences, by using translated searches

- This allows for more sensitive searches that detect homology at greater evolutionary distances
 - For example: homologous genes in distantly related species

- blastx and tblastx first translate the query from nucleotide into protein before identifying high-scoring words

- tblastn and tblastx use a translated database of nucleotide sequences stored as proteins
Profile alignment

- Alignments that use information about the sequence conservation into account are called profile alignments.
- In profile alignments, conserved residues have a bigger impact on the alignment score.
 - More conserved residues are weighed higher in the similarity score.
 - Less conserved residues are weighed lower in the similarity score.

→ Profile alignments are more sensitive in detecting homology than sequence alignments because all known variations are taken into account.
→ Profiles can be used to detect more distant homologs.

BLAST flavors: profile searches

- Position-Specific Iterated BLAST (PSI-BLAST) algorithm
 1. Perform initial blastp search with a query protein.
 2. Use the good database hits to construct a sequence profile.
 3. Search the database again, but with this sequence profile instead of with the original query sequence.
 4. Iterate steps 2-3.
Low-complexity regions

- Low-complexity regions can lead to high sequence similarity between unrelated sequences
- Solution: before performing a similarity search, low-complexity regions are often masked in the query so that they cannot contribute to the alignment score
 - This prevents identifying spurious hits

Low-complexity regions in BLAST output

- Lower case letters in the output show low-complexity sequence fragments that were ignored in the search
Faster tools are continually being developed.

The fastest algorithms generally use heuristics for speed. A practical method that is not guaranteed to be optimal, but sufficient for the present goals.

What heuristics are used by BLAST?

Bas E. Dutilh
Systems Biology: Bioinformatic Data Analysis
Utrecht University, February 27th 2017
Are these “real” hits or “spurious” hits?
What is our expectation?

• “Real” or “spurious” hit? This is a question of statistics!
• Statistics are **not well defined** for many bioinformatic analyses
 - For example, we need to consider the length of the sequence, the size of the database, the nucleotide composition of the sequences, and possible many other variables
• A simple solution is **data permutation**:
 - Permute (shuffle) the sequences 1000* times
 - Make 1000* new alignment matrices
 - Register if the alignment score of the permuted sequences is equal or higher than **Your Score**
 - This suggests that **Your Score** is not better than random

* or another high number
Relative frequency

The P-value is defined as the probability of observing a hit as good as, or better than \textbf{Your Score} by chance.

In permutation statistics, this corresponds to the fraction of times that the permuted score is equal or higher than \textbf{Your Score}.

Permutation statistics (shuffling)

- If the randomly permuted data rarely has a higher score than \textbf{Your score}, then the P-value is low, and your observation is meaningful.
- If the randomly permuted data often has a higher score than \textbf{Your score}, then the P-value is high, and your observation is not meaningful.
Permutation statistics

- In permutation statistics, the minimum P-value depends on the number of random permutations
 - For 100 permutations, the best P-value is <0.01
 - For 1000 permutations, the best P-value is <0.001

- Data permutation can randomize the signal, while preserving important characteristics of the data, such as:
 - Sequence length
 - Database size
 - Nucleotide composition
 - etc... (depending on your analysis)

- Permutation is a form of non-parametric statistics because it makes no assumptions about how the data is distributed

- Permutation statistics are often applied in bioinformatics
 - The computer can easily shuffle a dataset many times
 - Sometimes it can be challenging to figure out which aspects of the data to randomize!

Finding meaningful hits in a database

- How do we assess if a hit in the database is a real homolog?
How good is a hit?

- For a given query sequence, we want to find good hits
 - Highly similar sequence \rightarrow likely to be true homologs

- We know how to quantify sequence similarity:
 - Alignment score
 - Percent of identical aligned residues
 - Percentage of positive-scoring aligned residues

- ...but the chance of finding a similar sequence (high score) by chance is larger in a larger database

E-value and bitscore

...more about E-values now
Expect value (E-value)

- Number of hits you expect to find with a score, as good as, or better than [Your Score] (≥S) if the database was random.
- The E-value depends on [Your Score] and on:
 - The size of the database
 - The length of the query sequence
- The E-value is a parametric statistic because it assumes that the scores follow a Poisson distribution.

\[E = Kmn e^{-\lambda S} \]

Distribution of scores
- **in a small database**
- **in a large database**

Expect value (E-value)

- **E-value**: expected number of false positives at score S
 - “How often would you expect a hit at least this good (score ≥S) if the query and database were randomized?”
- Depends on:
 - Alignment score (S)
 - Higher alignment score: lower E-value ↓
 - Length of the query \((m) \)
 - Longer query sequence: higher E-value ↑
 - Size of the database \((n) \)
 - Larger database: higher E-value ↑
 - \(K \): constant for search space scaling
 - \(\lambda \): constant for substitution matrix correction
What is a good E-value?

• This is very difficult to say!
• Lower E-values are always better
 – Fewer false positives expected by chance in a database of this size
• As a rule of thumb:
 – E-values <10⁻⁶ for nucleotide blast (blastn, megablast) are good
 – E-values <10⁻³ for protein blast (blastp, blastx) are good

• Very low E-values are often given as exponents
• If you want to be very sure that your query and hit sequences are homologs, you should only trust extremely low E-values
• If you really have no other information about a protein, sometimes you might want to look at hits with high E-values
 – Can you trust a “best BLAST hit”? Cutoffs are important!

A low E-value: few false positives expected

• In the search below, we expect 10⁻¹⁴⁹ hits with a score of ≥436 bits by random chance
 – Given the database size and query sequence length, we expect
 – This is not much, so this is a good hit
A high E-value: a high risk of false positives

- In the search below, we expect 9.3 hits with a score of ≥38.9 bits by random chance
 - This is a lot, so this is a bad hit

E-value differs with different databases

- The same two sequences queryX (length m) and hitY will always give the same alignment and the same alignment score
- But if the database in which hitY was found is larger, the E-value becomes proportionally higher:
 \[E = Kmne^{-\lambda S} \]
The E-value and the P-value

• E-value: expected number of hits with score ≥S by chance
 – The E-value is an expected number of false positives
 – The E-value ranges from 0 to the size of the database (n)

• P-value: probability of observing at least one hit with score ≥S by chance
 – The P-value is a probability of finding at least one false positive
 – The P-value ranges from 0 to 1

\[P_S = 1 - e^{-E_S} \]

Your Score

The E-value and the P-value

• E-values and P-values are associated with a given score S
 – Example: if one expects to find 3 hits with score ≥S by chance (E = 3), the probability of finding at least one hit with score ≥S is 95% (P = 0.95)

• BLAST reports E-values rather than P-values because they are easier to interpret
 – Example: E-values of 5 and 10 expected false positives correspond to P-values of 0.993 and 0.99995, respectively

• For E-values < 0.01, P-values and E-values are nearly identical

The E-value and the P-value

- E-value: expected number of hits with score $\geq S$ by chance
- P-value: probability of observing at least one hit with score $\geq S$ by chance

$$P_S = 1 - e^{-E_S}$$